Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(7): 3440-3448, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31944685

RESUMO

Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of l-tyrosine- or l-leucine-derived 4-alkyl-l-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated l-proline-like precursors and likely in the microbial central metabolism.


Assuntos
Benzodiazepinas/metabolismo , Lincomicina/biossíntese , Oxirredutases/metabolismo , Pirróis/metabolismo , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Catálise , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Lincomicina/química , Lincomicina/farmacologia , Modelos Moleculares , Oxirredutases/química , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Prolina/análogos & derivados , Prolina/metabolismo , Pirróis/química , Pirróis/farmacologia , Riboflavina/análogos & derivados , Riboflavina/química , Riboflavina/metabolismo , Especificidade por Substrato , Tirosina/análogos & derivados , Tirosina/metabolismo
2.
Sci Rep ; 8(1): 7810, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773836

RESUMO

Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Benzodiazepinas/química , Streptomyces/metabolismo , Benzodiazepinas/metabolismo , Cromatografia Líquida , Evolução Molecular , Espectrometria de Massas , Redes e Vias Metabólicas , Análise de Sequência de Proteína , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...